AI创新链产业链融合发展 赋能数字经济新时代《中国人工智能专利技术分析报告(2022)》发布******
2022年12月,国家工业信息安全发展研究中心、工信部电子知识产权中心发布《AI创新链产业链融合发展赋能数字经济新时代—中国人工智能专利技术分析报告(2022)》,这是中心连续第5年就中国人工智能专利技术发展情况发布报告。
在新一轮科技革命和产业变革的大背景下,人工智能创新链产业链“双链”融合是释放数字化叠加倍增效应、驱动数字经济智能化跃升、打造产业综合竞争优势的必然路径。《报告》基于人工智能高价值专利增强创新链活力和助力产业链升级的角度,对深度学习、智能云、计算机视觉、智能语音、自然语言处理等十大技术领域进行专利申请趋势和分布构成分析,从“创造力”“保护力”“运用力”“竞争力”“影响力”五大方面对人工智能创新主体进行专利创新评价,研究人工智能专利如何高效助力各类“智慧+”应用场景落地,并对未来新兴人工智能技术应用和专利布局趋势作出研判。
图1 人工智能创新链产业链融合发展图谱
《报告》对人工智能高价值专利如何为创新链产业链融合发展保障护航进行了定量和定性分析。从行业公认的能够直观体现高价值专利的几个因素来看,自2011年、2012年开始,人工智能领域的中国专利奖占比逐年提高、专利许可转让数量呈上升趋势、专利诉讼遍及多个应用场景,展现了高价值专利对技术产业应用相辅相成的走势。
十大基础技术领域的专利数量稳步增长,极大激发AI创新链活力。深度学习、智能云、计算机视觉、智能语音、自然语言处理、大数据、知识图谱、智能推荐、智能芯片、量子计算等智能技术构成了人工智能创新链技术底座,也是产业链应用的基础技术。在技术与政策双红利的推动下,2016-2021年深度学习专利申请年均复合增长率达到53%,对人工智能的引领作用开始逐步凸显;相比之下,智能语音、自然语言处理、大数据、知识图谱和智能推荐领域的专利申请呈现稳步增长的态势,其中2021年自然语言处理的专利申请量仅次于深度学习、智能云和计算机视觉,发展势头强劲;智能芯片和量子计算由于起步相对较晚,相关专利储备较少,仍处于技术加速积累的阶段。国内创新主体也纷纷展开专利布局,不断增强市场竞争实力。例如百度公司在深度学习、智能云和智能驾驶等多个领域继续保持领先优势,寒武纪、浪潮和华为在智能芯片领域展现了充分的专注度和科研实力,清华大学、浙江大学等高校也在计算机视觉和自然语言处理等领域投入更多研发资源,成为基础攻关的重要力量。
图2 AI创新链十大基础技术专利申请趋势和分布构成
AI创新主体展现积极创新面貌,中小企业为产业发展增添新力量。从创新主体的申请量排名上看,百度、腾讯、国家电网、华为位列前四,专利申请数量均突破10000件,是我国AI领域技术创新的主力军。从专利授权量上看,仍然是上述四家企业位居前列,且百度公司专利申请量和授权专利持有量均排名第一。此外,腾讯专利2017-2020年腾讯专利申请年均复合增长率高达70%,在AI领域前四创新主体中申请量增速排名第一。从授权专利占比上看,申请量排名第七的清华大学和第九的浙江大学,均以45%的授权专利占比排名前两位。作为技术创新的重要源泉和吸纳劳动力就业的重要载体,大量中小企业也积极涌入人工智能赛道,在创新链一侧,我国人工智能领域企业主体共申请专利超过110万件,中小企业专利贡献超过90%。从产业链看,AI技术在中小企业中的普及率超过40%,语音识别、智能制造等技术在中小企业应用广泛,助力中小企业升级改造和智能化应用。
图3 创新链前十创新主体专利申请量和授权量
AI核心技术领域高价值专利集聚明显,产学研合作稳步推进。当前,智能云和深度学习是高价值专利数量最多的两个领域,百度得益于更早地投入与布局,展现专利申请数量与质量同步提升的发展态势。其他创新主体也结合自身业务发展方向,在不同的基础技术领域进行了有针对性的布局,如国家电网在深度学习和大数据领域,浪潮集团在智能云,阿里巴巴在智能推荐,平安科技在自然语言处理和计算机视觉都保持着创新优势。高等院校在人工智能领域技术创新活跃,涌现了大量专利成果,并通过与企业成立联合实验室和技术研发中心等方式,加快产学研用协同创新进程。截至2022年9月,我国人工智能领域产学研联合申请专利数量超2万余件,其中发明专利占比约90%,整体呈上升趋势增长,产业应用较为广泛。
图4 中国AI创新主体高价值专利技术布局
图5 AI领域产学研联合申请专利发展趋势图
AI专利助力新兴应用场景落地,推动产业链转型升级。目前,人工智能创新链的产业化应用主要集中在智慧城市、智慧交通、智慧医疗、智慧金融、智慧工业和智慧教育等领域。从技术应用的成熟度来看,不同AI技术在不同场景的应用呈现出阶梯式发展的态势。智慧工业是当前各创新主体主要布局的技术应用场景,AI专利申请量达到65万余件,其次就是智慧金融,专利申请量为30万余件。其中也涌现出“海淀城市大脑”“灵医智惠AI医疗品牌”“智慧交通解决方案TrafficGo2.0”“普惠金融人工智能开放平台”等众多优秀实践案例,推动高端智能技术与行业的融合发展。
“智慧+”场景应用创造出更多产业增长点,新兴人工智能技术生成数字经济发展新动能。AI在城市、交通、医疗、教育及工业等场景的融合应用加速,不断催生新业态新模式新产业。以智慧工业为例,将工业互联网、人工智能等在内的智能制造新技术与工具,集成到工业生产流程中,正在引领我国工业数字化新生态。报告显示,截至2022年9月,我国智慧工业领域申请专利共计65万余件。百度公司以近9000件专利总数位居第一,国家电网位居第二,其余创新主体专利申请量差距不大,发展潜力较强,各创新主体在智慧工业领域的专利布局积极竞争,难以拉开较大差距。与此同时,基于人工智能的深度学习、内容生成,语音、视觉识别技术越来越成熟,以元宇宙和数字人技术为代表的新兴技术,也迎来了专利的快速积累阶段,百度、腾讯、华为等企业积极开展前沿专利布局,探索人机交互发展和应用,助力数字经济高质量发展。
图6 中国元宇宙专利主要申请人排名
图7 中国数字人专利技术申请-公开趋势
《报告》结合当前人工智能知识产权生态建设和全产业链专利布局情况,对产业高质量可持续发展提出总结与展望。人工智能是新一轮科技革命和产业变革的重要驱动力量,发展人工智能是支撑科技自立自强、实现高质量发展的重要战略。党的二十大报告提出,推动战略性新兴产业融合集群发展,构建新一代信息技术、人工智能、生物技术、新能源、新材料、高端装备、绿色环保等一批新的增长引擎。当前,人工智能技术与5G、云计算、大数据的融合发展已将成为推动数字经济发展的动能源泉,今后将进一步与其他数字技术相互碰撞出全新的科技驱动力。随着人工智能创新发展跨入新的历史阶段,专利申请总量突破百万件,专利申请趋势仍在快速增长,技术人才规模不断扩大,产业融合广泛深入,应当在底层关键技术突破、建设知识产权生态、大中小企业共同完善专利布局、开辟更广泛应用场景等方面发力,实现创新链与产业链的协同发展。
【观点】构筑顶层设计 开创工业和信息化领域数据安全管理新格局******
近日,工业和信息化部出台了《工业和信息化领域数据安全管理办法(试行)》(以下简称“《管理办法》”)。《管理办法》作为工业和信息化领域(以下简称“工信领域”)数据安全管理顶层制度文件,是全面贯彻落实《数据安全法》等国家数据安全法律法规的重要举措,也是前期工信领域数据安全管理实践经验的固化总结。《管理办法》以安全发展理念为指引,建立健全了工信领域数据安全制度机制,搭建起工信领域数据安全管理的“四梁八柱”,细化明确了数据全生命周期安全保护要求,为工信领域企业落实数据安全管理和技术保护措施提供了明确指引,标志着工信领域数据安全管理工作迈出了具有里程碑意义的重要一步。
一、夯实数据安全根基,建立工信领域数据安全管理基本遵循
随着全球数字经济的蓬勃发展,数据已成为关键生产要素和核心战略资源,数据安全的基础保障作用和发展驱动效应日益突出,攸关国家安全、公共利益和个人权利。党和国家敏锐把握数字经济发展的战略机遇,将数据作为新型生产要素,加快培育数据要素市场,充分释放数据红利,同时,高度重视、不断推进数据安全保护工作。党的二十大报告立足中华民族伟大复兴战略全局和世界百年未有之大变局,做出“统筹发展与安全”的重要部署,要求“坚定不移贯彻总体国家安全观”,“以新安全格局保障新发展格局”,重点强化数据安全保障体系建设。
安全保障,制度先行。国务院《“十四五”数字经济发展规划》将研究完善行业数据安全管理政策作为提升国家总体数据安全保障水平的关键一环。《数据安全法》《个人信息保护法》等国家重大数据安全立法加速出台,进一步明确了数据安全行政监管的上位法依据和职责边界,对各行业、各领域承接落实也提出了新要求。
工信领域是我国数字化转型的排头兵和产业数字化的主阵地。信息通信网络覆盖社会千行百业,是经济社会运行的“神经中枢”,汇聚海量用户数据和关系国计民生的重要数据。工业数字化转型催生海量工业数据资源,且数据互联互通加快导致数据安全风险与威胁点增多,数据安全形势愈发严峻复杂,工信领域数据安全保护亟待强化。加速完善工信领域数据安全管理政策,夯实数据安全工作基石,是认真践行总体国家安全观,统筹发展和安全,护航工信领域数字化发展的必然要求,也是落实党和国家决策部署、提升国家总体数据安全保障水平的必担之责。
二、筑牢数字安全屏障,明确工信领域数据安全保护的规则指引
《管理办法》坚持安全与发展并重、鼓励与规范并举原则,推动建立健全安全可控、弹性包容的工信领域数据安全规则体系,一方面,明确数据安全管理关键制度要求,划定工信领域数据流通利用的安全基线,同时,构建多元主体协同共治格局,着力提升工信领域数字信任,为我国数字化转型保驾护航。具体来说,《管理办法》核心内容包括以下几个方面:
(一)明确管理体制,建立三级联动的数据安全工作机制
《管理办法》衔接国家数据安全工作协调机制,充分结合工信领域既成的监管体制,构建了“部-地方-企业”三级联动的数据安全工作机制:在部层面,由工业和信息化部负责工信领域数据安全总体统筹与监督管理。在地方层面,地方工业和信息化主管部门、地方通信管理局、地方无线电管理机构分别负责对本地区工业数据处理者、电信数据处理者、无线电数据处理者的数据处理活动和安全保护进行监督管理。在企业层面,工业数据处理者、电信数据处理者、无线电数据处理者承担本单位的数据安全主体责任,落实工信领域数据安全管理要求。这种条块结合的监管组织架构既贯彻了《数据安全法》对于各地区、各行业、各领域数据安全监管的责任分工,也充分考虑了工信领域管理的共性需求与实践差异。
(二)细化分类分级,建立涵盖事前事中事后的监管制度机制
《管理办法》承接细化《数据安全法》数据分类分级保护要求,以预防、控制和消除数据安全风险为核心,建立工信领域数据安全管理关键制度机制。一是明确工信领域数据分类参考因素及数据分级识别依据,建立重要数据和核心数据目录备案管理机制,为工信领域数据分类分级安全管理提供实操指引。二是建立工信领域数据安全风险监测机制及风险信息上报和共享机制,对数据安全风险进行监测、汇聚、分析、通报,加强工信领域数据安全风险的事前感知。三是明确应急处置机制流程,制定工信领域数据安全事件应急预案,预防和减少数据安全事件发生后造成的损失和危害。四是完善投诉举报机制,建立部省两级数据投诉举报渠道,充分发挥社会监督作用,广泛获取数据安全违法信息。五是建立数据安全检测、认证、评估管理制度,提升工信领域数据安全产品、服务质量及安全保障能力,推动数字安全产业发展。
(三)落实主体责任,加强重要数据和核心数据重点保护
《管理办法》对标《数据安全法》《网络安全法》《个人信息保护法》中的数据安全保护义务,明确细化工信领域数据处理者的数据安全主体责任。一是要求建立数据全生命周期安全管理制度,制定各环节分级防护要求和操作规程,配备管理人员,加强权限管理,制定应急预案,定期开展教育培训以及其他必要措施。二是要求结合数据收集、存储、使用、加工、传输、提供、公开等环节特点设置针对性保护措施,有效加强数据安全保护。三是以一般数据、重要数据、核心数据三级数据划分为主线贯穿数据全生命周期安全管理,要求采取工作体系建设、内部登记审批、关键岗位管理、安全防护等管理及技术措施对重要数据和核心数据进行重点保护,切实保障国家安全和社会公共利益。
(四)引入多利益相关方,构建数据安全协同治理生态
数据安全保护涉及主体多元、场景复杂、环节众多,构建良好的数据安全治理生态需要开展多方协同。《管理办法》引入企业、研究机构、行业组织、安全服务机构等各类主体参与数据安全治理。一是推动数据安全产业发展,支持数据安全企业、研究和服务机构开展数据安全技术研发创新,结合行业数据安全需求培育、发展数据安全产品和服务,提升数据安全产品供给能力。二是组织企业、研究机构、高等院校、行业组织等各类主体开展相关标准的制修订及推广应用工作,增强标准制定参与主体的广泛性,通过标准促进数据应用规范化,提升数据处理活动的安全性。三是发挥安全服务机构、行业组织、科研机构数据安全能力,鼓励协同开展数据安全风险信息上报和共享,汇聚多方力量应对数据安全风险。四是发挥评估机构专业能力,辅助开展数据安全风险评估、出境评估等活动,助力企业持续提升数据安全保障水平。
三、凝聚多方合力,全面提升工信领域数据安全保障水平
在数据安全威胁和风险日益突出,国家数据安全管理要求亟需落地的大背景下,《管理办法》的出台正当其时。《管理办法》正式实施后,将开创工信领域数据安全保护工作新局面。为进一步推动其落地,有效提升工信领域数据安全治理能力,重点提出以下几方面思考:
(一)加强政策宣贯培训,全面提升数据安全保护意识和水平
《管理办法》发布是引导工信领域深入贯彻领会数据安全管理制度要求,加快推动数据安全管理工作制度化、规范化的良好契机。做好宣贯培训,采取部级示范培训和地方重点培训相结合的方式,针对性、分层次、有深度地设计行业数据安全宣贯培训内容,对《数据安全法》《管理办法》进行系统阐释和深入解读,统一理解认识,有助于行业监管部门推动管理制度要求有效落实与执行,打响“发令枪”。同时,数据处理者要定期开展数据安全管理培训,明确关键、重点岗位培训方案,确保数据安全从业人员全覆盖,及时评定培训效果,做好“冲锋者”。
(二)做好重要数据识别备案,有效夯实数据安全工作基础
重要数据保护已成为工信领域数据安全管理的重中之重。随着《管理办法》的推进实施,还需要行业监管部门结合工业、电信行业领域自身特点和实践需求,配套制定重要数据识别标准规范,建立完善备案审核及上报流程机制,为工信领域企业深化落实数据安全基线要求进一步提供细化规则。数据处理者也需要按照行业监管部门的工作要求,紧密结合自身数据安全工作实际,定期梳理数据资源,扎实开展重要数据识别和目录动态备案管理工作,切实履行好安全主体责任。
(三)抓好风险防范化解,切实增强数据安全保障能力
有效发现、抵御工信领域数据安全突出风险,是维护数据安全的发力点和核心战力。加强数据安全风险评估、报告、信息共享、监测预警工作部署,推进全国数据安全管理平台建设,加快打造工信领域数据安全风险态势感知能力,将成为下一步行业监管工作的重点。数据处理者应围绕数据安全保护需求,配合部、省两级主管部门开展风险监测排查,及时防范行业数据安全风险隐患;做好数据安全风险评估和数据出境安全评估,不断提升数据安全合规能力。安全服务机构、行业组织、科研机构要主动参与风险信息上报和共享,按照“及时、客观、准确、真实、完整”的原则报送掌握的风险信息。
(四)加强正向激励引导,多措并举提升数据安全保护水平
坚持监督管理与正向引导相结合,有利于充分调动企业的自主性和积极性,更大程度激发企业提升自身数据安全管理水平的内生动力。行业监管部门在加强监督检查,通过执法、约谈等措施敦促企业责任落实的同时,可以综合运用行业自律、竞赛、优秀案例评选等多种方式加强示范引领,推进企业标准贯标达标工作,指引企业提升数据安全管理能力。数据处理者要充分发挥能动性,自动对标管理要求和最佳实践,自觉提升数据收集、存储、加工、传输、提供、公开、销毁等全环节安全保护水平。在业务系统上线、运营中,同步规划、同步建设、同步运行数据安全保障措施,进一步提升数据有效利用与安全保护平衡能力。
(作者:中国信通院院长 余晓晖)